PRODUCT SPECIFITION

\square Tentative Specification
\square Preliminary Specification
Approval Specification

SUPPLIER Kingtech Group Co.,Ltd Modle No. PV185003S0730D

ITEM BUYER SIGNATURE DATE
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

REVISION HISTORY

REV.	ECN No.	DESCRIPTION OF CHANGES	DATE	PREPARED
P0	-	Initial Release	2022.03 .21	Qiming Li
0		Update	2022.03 .21	Qiming Li

Contents

No	ITEM	Page
	REVISIONS HISTORY	2
	CONTENTS	3
1	GENERAL DESCRIPTION	4
	1.1 Introduction	
	1.2 Features	
	1.3 Applications	
	1.4 General Specification	
2	ABSOLUTE MAXIMUM RATINGS	6
3	ELECTRICAL SPECIFICATIONS	7
	3.1 TFT LCD Open Cell	
4	INTERFACE CONNECTION	8
	4.1 Open Cell Input Signal \& Power	
	4.2 LVDS Interface	
	4.3 LVDS Rx Interface Timing Parameter	
	4.4 LVDS Rx Interface Eye Diagram	
	4.5 LVDS Receiver Differential Input	
5	SIGNAL TIMING SPECIFICATIONS	14
	5.1 Timing Parameters (DE only mode)	
	5.2 Signal Timing Waveform	
	5.3 Input Signals, Basic Display Colors and Gray Scale of Colors	
	5.4 Power Sequence	
6	OPTICAL SPECIFICATIONS	18
7	MECHANICAL CHARACTERISTICS	20
8	RELIABILITY TEST	21
9	PRODCUT SERIAL NUMBER	22
10	PACKING INFORMATION	23
11	PRECAUTIONS	25
12	APPENDIX	26

1.0 GENERAL DESCRIPTION

1.1 Introduction

PV185003S0730D is a color active matrix TFT LCDOpen Cell using amorphous silicon TFT's (Thin Film Transistors) as an active switching devices. This Open Cell has a 18.5 inch diagonally measured active area with FHD resolutions (1920 horizontal by 1080 vertical pixel array). Each pixel is divided into RED, GREEN, BLUE dots which are arranged in vertical stripe and this module can display 16.7M colors. The TFT-LCD Open Cell panel is adapted for a low reflection and higher color type.

1.2 Features

- LVDS interface with 2 pixel / clock
- High-speed response
- Low color shift image quality
- 8 -bit color depth, display 16.7M colors
- Wide viewing angle
- DE (Data Enable) only mode
- iHADS technology is applied for high display quality
- RoHS compliant

1.3 Application

- Commercial Digital Display
- Display Terminals for Control System
- Landscape Display

1.4 General Specification

< Table 1. General Specifications >

Parameter	Specification	Unit	Remarks
Active area	$408.96(\mathrm{H}) \times 230.04(\mathrm{~V})$	mm	
Number of pixels	$1920(\mathrm{H}) \times 1080(\mathrm{~V})$	pixels	
Pixel pitch	$213(\mathrm{H}) \times 213(\mathrm{~V})$	um	
Pixel arrangement	Pixels RGB Vertical stripe		
Display colors	16.7 M	colors	Real 8bits
Display mode	Normally Black		
Open Cell Transmittance	3.8%	mm	Detail refer to drawing
Dimensional outline	$430.37(\mathrm{H}) \times 254.6(\mathrm{~V}) \times 11.2(\mathrm{D})$	g	
Weight	TBD	Watt	BLU Consumption $14.4 W$ typ 17W max
Power Consumption	17.15 W typ. 23W max.		
Surface Treatment	Haze 25\%, 3H		

2.0 ABSOLUTE MAXIMUM RATINGS

The followings are maximum values which, if exceed, may cause faulty operation or damage to the unit. The operational and non-operational maximum voltage and current values are listed in Table 2.
< Table 2. Open Cell Electrical Specifications >

Parameter	Symbol	Min.	Max.	Unit	Remark
Power Supply Voltage	VDD	VSS-0.3	6.5	V	Ta $=25^{\circ} \mathrm{C}$
Operating Temperature	T_{OP}	-20	+70	${ }^{\circ} \mathrm{C}$	
Storage Temperature	$\mathrm{T}_{\text {SUR }}$	-30	+80	${ }^{\circ} \mathrm{C}$	Note 1
	$\mathrm{T}_{\text {ST }}$	-30	+80	${ }^{\circ} \mathrm{C}$	
Operating Ambient Humidity	Hop	10	80	\%RH	
Storage Humidity	Hst	10	80	\%RH	

Note 1 : Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be $39^{\circ} \mathrm{C}$ max. and no condensation of water.

3.0 ELECTRICAL SPECIFICATIONS

3.1 TFT LCD Open Cell

< Table 3. Open Cell Electrical Specifications >
$\left[\mathrm{Ta}=25 \pm 2^{\circ} \mathrm{C}\right]$

Parameter		Symbol	Values			Unit	Remark	
		Min	Typ	Max				
Power Supply Input Voltage			VDD	4.5	5.0	5.5	V	
Power Supply Ripple Voltage		VRP			200	mV		
Power Supply Current		IDD	-	550	1400	mA		
Power Consumption		PDD	-	2.75	6.0	Watt		
Rush current		IRUSH	-	-	3.0	A	Note 2	
LVDS Interface	Differential Input High Threshold Voltage	VLVTH	-	-	+100	mV		
	Differential Input Low Threshold Voltage	VLVTL	-100	-	-	mV		
	Common Input Voltage	VLVC	1.0	1.2	1.4	V		
CMOS Interface	Input High Threshold Voltage	VIH	2.7	-	3.3	V		
	Input Low Threshold Voltage	VIL	0	-	0.6	V		

Note 1 : The supply voltage is measured and specified at the interface connector of LCM.
The current draw and power consumption specified is for VDD=5.0V,
Frame rate $\mathrm{f}_{\mathrm{V}}=60 \mathrm{~Hz}$ and Clock frequency $=74.25 \mathrm{MHz}$.
Test Pattern of power supply current

Note 2 : The duration of rush current is about 2 ms and rising time of Power Input is $1 \mathrm{~ms}(\mathrm{~min})$

3.2 Back-Light Unit

Table 4. LED Driver Electrical Specifications >
$\left[\mathrm{Ta}=25 \pm 2{ }^{\circ} \mathrm{C}\right]$

Parameter		Min.	Typ.	Max.	Unit	Remarks
LED Forward Voltage	VLED		48.0		V	-
LED Forward Current	ILED		480		mA	-
LED Power Consumption	P LED		3.6		W	Note 1
LED Life-Time	N/A	30,000	-	-	Hour	$\mathrm{IF} \mathrm{F}_{2}=20 \mathrm{~mA}$

Notes: 1. PLED = VLED \times ILED (Without LED converter transfer efficiency)
2. The life time of LED, $30,000 \mathrm{Hrs}$, is determined as the time at which luminance of the LED is 50% compared to that of initial value at the typical LED current on condition of continuous operating at $25 \pm 2^{\circ} \mathrm{C}$.

4.0 INTERFACE CONNECTION

4.1 Open Cell Input Signal \& Power

- LVDS Connector: IS100-L30R-C23 (UJU) or Equivalent.
< Table 4. Open Cell Input Connector Pin Configuration >

$\left.$| Pin No | Symbol | Description | Pin No | Symbol | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | RXO0- | Negative Transmission data
 of Pixel 0 (ODD) | 16 | RXE1+ | Positive Transmission data of
 Pixel 1 (EVEN) |
| 2 | RXO0+ | Positive Transmission data of
 Pixel 0 (ODD) | 17 | GNG | Power Ground |
| 3 | RXO1- | Negative Transmission data
 of Pixel 1 (ODD) | 18 | RXE2- | Negative Transmission data
 of Pixel 2 (EVEN) |
| 4 | RXO1+ | Positive Transmission data of
 Pixel 1 (ODD) | 19 | RXE2+ | Positive Transmission data of
 Pixel 2 (EVEN) |
| 5 | RXO2- | Negative Transmission data
 of Pixel 2 (ODD) | 20 | RXEC- | Negative Transmission Cloc
 k (EVEN) |
| 6 | RXO2+ | Positive Transmission data of
 Pixel 2 (ODD) | 21 | RXEC+ | Positive Transmission Clock
 (EVEN) |
| 7 | GND | RXOC- | Negative Transmission Clock
 (ODD) | 23 | RXE3+ | | Positive Transmission data of |
| :---: |
| Pixel 3 (EVEN) | \right\rvert\,

Note : 1.Pin 24 should be connected with GND.
2. NC(Not Connected) : This pins are only used for BOE internal operations.
3. Input Level of LVDS signal is based on the EIA-644 Standard.
4. Data format: VESA only.
4.2 LVDS Interface

- LVDS Receiver : Timing Controller (LVDS Rx merged) / LVDS Data : Pixel Data
< Table 5. Open Cell Input Connector Pin Configuration >

Channel No.	Data No.	8-bit LVDS Type
		NS
0	Bit-0	R0
	Bit-1	R1
	Bit-2	R2
	Bit-3	R3
	Bit-4	R4
	Bit-5	R5
	Bit-6	G0
1	Bit-0	G1
	Bit-1	G2
	Bit-2	G3
	Bit-3	G4
	Bit-4	G5
	Bit-5	B0
	Bit-6	B1
2	Bit-0	B2
	Bit-1	B3
	Bit-2	B4
	Bit-3	B5
	Bit-4	HS
	Bit-5	VS
	Bit-6	DE
3	Bit-0	R6
	Bit-1	R7
	Bit-2	G6
	Bit-3	G7
	Bit-4	B6
	Bit-5	B7
	Bit-6	-

4.3 LVDS Rx Interface Timing Parameter
 The specification of the LVDS Rx interface timing parameter is shown in Table 6.

<Table 6. LVDS Rx Interface Timing Specification>

Item	Symbol	Min	Typ	Max	Unit	Remark
CLKIN Period	tRCIP	12.83	13.47	16.66	nsec	
Input Data 0	tRIP1	-0.42	0.0	+0.42	nsec	
Input Data 1	tRIP0	tRCIP $/ 7-0.42$	tRCIP $/ 7$	tRCIP $/ 7+0.42$	nsec	
Input Data 2	tRIP6	$2 \times \mathrm{tRCIP} / 7-0.42$	$2 \times \mathrm{tRCIP} / 7$	$2 \times \mathrm{tRCIP} / 7+0.42$	nsec	
Input Data 3	tRIP5	$3 \times \mathrm{tRCIP} / 7-0.42$	$3 \times \mathrm{tRCIP} / 7$	$3 \times \mathrm{tRCIP} / 7+0.42$	nsec	
Input Data 4	tRIP4	$4 \times \mathrm{tRCIP} / 7-0.42$	$4 \times \mathrm{tRCIP} / 7$	$4 \times \mathrm{tRCIP} / 7+0.42$	nsec	
Input Data 5	tRIP3	$5 \times \mathrm{tRCIP} / 7-0.42$	$5 \times \mathrm{tRCIP} / 7$	$5 \times \mathrm{tRCIP} / 7+0.42$	nsec	
Input Data 6	tRIP2	$6 \times \mathrm{tRCIP} / 7-0.42$	$6 \times \mathrm{tRCIP} / 7$	$6 \times \mathrm{tRCIP} / 7+0.42$	nsec	

4.4 LVDS Rx Interface Eye Diagram

< Table 7. LVDS Rx Interface Eye Diagram>

Symbol	Min	Typ	Max	Unit	Note
A	-	150	-	mV	
B	-	150	-	mV	
C	-	0	-	mV	
D	-	-150	-	mV	
E	-	-150	-	mV	
F	-	0	-	mV	

Notes: 1. Time F to A, B to C, C to D, E to F is 150 p second.
2. LVDS clock=85Mhz.
3. The time A to $\mathrm{B}=1 \mathrm{~T}-2^{*}$ TRSKM $-2^{*} 150 \mathrm{ps}$.

4.5 LVDS Receiver Differential Input

< Table 7-1. LVDS Receiver Differential Input>

Symbol	Parameter	Min	Typ	Max	Uni \mathbf{t}	Condition
$\mathrm{R}_{\mathrm{xVTH}}$	Differential input high threshold voltage	+0.1			V	$\mathrm{RxVCM}=1.2 \mathrm{~V}$
$\mathrm{R}_{\mathrm{xVTL}}$	Differential input low threshold voltage			-0.1	V	
$\mathrm{R}_{\mathrm{XVIN}}$	Input voltage range (singled-end)	0		2.4	V	
$\mathrm{R}_{\mathrm{xVCM}}$	Differential input common mode voltage	$\left\|\mathrm{V}_{\mathrm{ID}}\right\| / 2$		$2.4-\mid \mathrm{V}_{\mathrm{ID}} / / 2$	V	
$\left\|\mathrm{~V}_{\mathrm{ID}}\right\|$	Differential input voltage	0.1		0.6	V	

5.0 SIGNAL TIMING SPECIFICATION

5.1 Timing Parameters (DE only mode)

< Table 8. Timing Table >

Item		Symbols		Min	Typ	Max	Unit		
Clock	Frequency	1/Tc		60	74.25	78	MHz		
	High Time	Tch		-	4/7Tc	-			
	Low Time	Tcl		-	$3 / 7 \mathrm{Tc}$	-			
Frame Period		Tv		1100	1125	1149	lines		
		48.5	60	63	Hz				
Horizontal Active Display Term				Valid	t_{HV}	-	960	-	$\mathrm{t}_{\text {cLK }}$
		Total	t_{HP}	1060	1100	1200	$\mathrm{t}_{\text {cLK }}$		
Vertical Active Display Term		Valid	$t_{\text {vv }}$	-	1080	-	t_{HP}		
		Total	t_{vP}	1100	1125	1149	t_{HP}		

Notes: This product is DE only mode. The input of Hsync \& Vsync signal does not have an effect on normal operation.
< Table 9. LVDS Input SSCG>

Symbol	Parameter	Condition	Min	Typ	Max	Unit
F	LVDS Input frequency	-	60	74.25	78	MHz
$\mathrm{T}_{\text {LVSK }}$	LVDS channel to channel skew	$\mathrm{F}=100 \mathrm{MHz}$ $\mathrm{V}_{\text {IC }}=1.2 \mathrm{~V}$ $\mathrm{~V}_{\text {ID }}= \pm 400 \mathrm{mV}$	-380	-	+380	ps
$\mathrm{F}_{\text {LVMOD }}$	Modulating frequency of input cl ock during SSC		60	-	85	KHz
$\mathrm{F}_{\text {LVDEV }}$	Maximum deviation of input clock frequency during SSC		-3	-	+3	$\%$
$\mathrm{~T}_{\text {CY-CY }}$	Cycle to Cycle jitter		-	-	100	ps

5.2 Signal Timing Waveform

5.2.1 Sync Timing Waveforms

V-Sync

DE
Fix H-Sync width Area

1) Need over 3 H -sync during V-Sync Low
2) Fix H-Sync width from V-Sync falling edge to first rising edge

5.2.2 Vertical Timing Waveforms

MCLK

5.2.3 Horizontal Timing Waveforms

RB7 ~RB0

5.3 Input Signals, Basic Display Colors and Gray Scale of Colors

< Table 10. Input Signal and Display Color Table >

Color \& Gray Scale		Input Data Signal																																			
			Red Data								Green Data							Blue Data																			
		$\frac{\mathrm{R}}{}$	R7\|R6	R5	R4	R3	R2	R1	R0							G7G6	G5\|G4	G3	G2G1	G0						B7\|B6	B5			B4\|B3	B2	B1	B0				
Basic Colors	Black		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0													
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1													
	Green	0	0	0	0	0	0	0	01	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0													
	Cyan	0	0	0	0	0	0	0	01	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1													
	Red	1	1	1	1	1	11	1	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0													
	Magenta	1	,	1	1	1	11	1	10	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1													
	Yellow	1	1	1	1	1	11	1	11	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0													
	White	1	1	1	1	1	11	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1													
Gray Scale of Red	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0													
	\triangle	0	0	0	0	0	0	01	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0													
	Darker	0	0	0	0	0	01	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0													
	\triangle				\uparrow								\uparrow																								
	∇																																				
	Brighter	1	,	1	1	11	10	011	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0													
	∇	1	1	1	1	1	11	10	00	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0													
	Red	1	1	1	1	1	11	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0													
Gray Scale of Green	Black	0	0	0	0	0	0	0	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0													
	\triangle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0													
	Darker	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	-	0	0													
	\triangle				\uparrow								\uparrow							\uparrow																	
	∇																																				
	Brighter	0	0	0	0	0	0	0	011	11	1	1	1	1	0	1	0	0	0	0	0	0	0	0													
	∇	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0													
	Green	0	0	0	0	0	0	0	1	,	1	1	1	1	1	1	0	0	0	0	0	0	0	0													
Gray Scale of Blue	Black	0	0	0	0	0	0	0	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0													
	\triangle	0	0	0	0	0	0	0	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1													
	Darker	0	0	0	0	0	0	0	00	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0													
	\triangle				\uparrow								\uparrow							\uparrow																	
	∇																																				
	Brighter	0	0	0	0				00	0	0	0	0	0	0	0	1	1	1	1	1	1	-	1													
	∇	0	0	0	0	0	0	00	00	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0													
	Blue	0	0	0	0	0	0	0	00	0	0	0	0	0	0	0	1	1	1	1	1	1	1	-1													
Gray Scale of White	Black	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0													
	\triangle	0	0	0	0	0	0	01	10	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1													
	Darker	0	0	0	0	0	01	10	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0													
	\triangle									\uparrow							- \uparrow																				
	∇	\uparrow								-																											
	Brighter	1			1	1			11	11	1	1	1	1	0	1	1	1	1	1	1	1	0	1													
	∇	1	1	1	1	1	11	10	01	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0													
	White	1	1	1	1	1	11	11	$1{ }^{1} 1$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1													

5.4 Power Sequence

To prevent a latch-up or DC operation of the Open Cell, the power on/off sequence shall be as shown in below

< Table 11. Sequence Table >

Parameter	Values			Units
	Min	Typ	Max	
T1	0.5	-	20	ms
T2	10	-	100	ms
T3	200	-	-	ms
T4	200	-	-	ms
T5	0	-	-	ms
T6	1	-	-	s

Notes: 1. Back Light must be turn on after power for logic and interface signal are valid.
2. Even though T1 is out of SPEC, it is still ok if the inrush current of VDD is below the limit.
3. When VDD<0.9VDD(Typ.),Power off.
4. T7 decreases smoothly, if there were rebounding voltage, it must smaller than 5 volts.

6.0 OPTICAL SPECIFICATIONS

The test of optical specifications shall be measured in a dark room (ambient luminance ≤ 1 lux and temperature $=25 \pm 2^{\circ} \mathrm{C}$) with the equipment of Luminance meter system (Goniometer system and PR730) and test unit shall be located at an approximate distance 180 cm from the LCD surface at a viewing angle of θ and Φ equal to 0°. We refer to $\theta_{\varnothing=0}\left(=\theta_{3}\right)$ as the 3 o'clock direction (the "right"), $\theta_{\varnothing=90}\left(=\theta_{12}\right)$ as the 12 o'clock direction ("upward"), $\theta_{\varnothing=180}$ ($=\theta_{9}$) as the 9 o'clock direction ("left") and $\theta_{\varnothing=270}\left(=\theta_{6}\right)$ as the 6 o'clock direction ("bottom"). While scanning θ and/or \varnothing, the center of the measuring spot on the Display surface shall stay fixed. The measurement shall be executed after 30 minutes warm-up period. VDD shall be 12.0 V at $25^{\circ} \mathrm{C}$. Optimum viewing angle direction is 6 'clock.
< Table 12. Optical Table >

$$
\left[\mathrm{VDD}=12.0 \mathrm{~V}, \text { Frame rate }=60 \mathrm{~Hz}, \mathrm{Ta}=25 \pm 2{ }^{\circ} \mathrm{C}\right]
$$

Parameter		Symbol	Condition	Min	Typ	Max	Unit	Remark
Viewing Angle	Horizontal	Θ_{3}	$C R>10$	80	89		Deg.	Note 1
		Θ_{9}		80	89		Deg.	
	Vertical	Θ_{12}		80	89		Deg.	
		Θ_{6}		80	89		Deg.	
Contrast ratio		CR	$\Theta=0^{\circ}$ (Center) Normal Viewing Angle	800:1	1200:1	-		Note 2
Reproduction of color	White	W_{x}		$\begin{aligned} & \text { TYP. } \\ & -0.03 \end{aligned}$	0.309	$\begin{aligned} & \text { TYP. } \\ & +0.03 \end{aligned}$		Note 3 With BOE YR粉 BLU
		W_{y}			0.310			
	Red	R_{x}			0.652			
		R_{y}			0.338			
	Green	G_{x}			0.314			
		G_{y}			0.606			
	Blue	B_{x}			0.149			
		B_{y}			0.059			
Color Gamut				67	72	-	\%	
Response Time		GTG		-	14	-	ms	Note 4
Gamma Scale				2.0	2.2	2.4		
Cell Transmittance				3.4	3.8	-	\%	

Note :

1. Viewing angle is the angle at which the contrast ratio is greater than 10. The viewing are determined for the horizontal or 3, 9 o'clock direction and the vertical or 6, 12 o'clock direction with respect to the optical axis which is normal to the LCD surface.
2. Contrast measurements shall be made at viewing angle of $\theta=0^{\circ}$ and at the center of the LCD surface. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state. Luminance Contrast Ratio (CR) is defined mathematically.

Luminance when displaying a white raster

$$
\mathrm{CR}=\underline{\text { Luminance when displaying a black raster }}
$$

3. The color chromaticity coordinates specified in Table 12.shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel. The BLU is used by BOE.
4. Response time T_{r} shall be measured by switching the signal from " 0 level of gray" to " 255 level of gray". And response time T_{f} shall be measured by switching the signal from " 255 level of gray" to " 0 level of gray".

Measured Response Time		Target																
		0	15	31	47	63	79	95	111	127	143	159	175	191	207	223	239	255
Start	0																	
	15																	
	31																	
	47																	
	63																	
	79																	
	95																	
	111																	
	127																	
	143																	
	159																	
	175																	
	191																	
	207																	
	223														\bigcirc		-	
	239															-		
	255																\checkmark	-

5. Definition of Transmittance (T\%) :

Module is with white(L255) signal input

$$
\text { Transmittance }=\frac{\text { Luminance of LCD Module }}{\text { Luminance of BLU }} \times 100 \%
$$

7.0 MECHANICAL CHARACTERISTICS

7.1 Dimensional Requirements

Figure 3(located in Appendix) shows mechanical outlines for the model G185B128-186-1701 Other parameters are shown in Table 13.
< Table 13. Dimensional Parameters >

Parameter	Specification	Unit
Dimensional outline	$430.37(\mathrm{H}) \times 254.6(\mathrm{~V}) \times 11.2(\mathrm{D})$	mm
Weight	TBD	gram
Active area	$408.96(\mathrm{H}) \times 230.04(\mathrm{~V})$	mm
Pixel pitch	$213(\mathrm{H}) \times 213(\mathrm{~V})$	um
Number of pixels	$1920(\mathrm{H}) \times 1080(\mathrm{~V})(1$ pixel $=\mathrm{R}+\mathrm{G}+\mathrm{B}$ dots $)$	pixels

7.2 Mounting

See FIGURE 3.(shown in Appendix)

7.3 Anti-Glare and Polarizer Hardness.

The surface of the LCD has an anti-glare coating to minimize reflection and a coating to reduce scratching.

8.0 RELIABILITY TEST

The Reliability test items and its conditions are shown in below.
< Table 14. Reliability Test Parameters >

No	Test Items	Conditions
1	High temperature storage test	$\mathrm{Ta}=80^{\circ} \mathrm{C}, 240 \mathrm{hrs}$
2	Low temperature storage test	$\mathrm{Ta}=-30^{\circ} \mathrm{C}, 240 \mathrm{hrs}$
3	High temperature \& high humidity operation test	$\mathrm{Ta}=50^{\circ} \mathrm{C}, 80 \% \mathrm{RH}, 240 \mathrm{hrs}$
4	High temperature operation test	$\mathrm{Ta}=70^{\circ} \mathrm{C}, 240 \mathrm{hrs}$
5	Low temperature operation test	$\mathrm{Ta}=-20^{\circ} \mathrm{C}, 240 \mathrm{hrs}$
6	Thermal shock	$\mathrm{Ta}=-20^{\circ} \mathrm{C} \leftrightarrow 60^{\circ} \mathrm{C}$ (per 0.5 hr), 100 cycle

9.0 PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD Panel.

9.1 Mounting Precautions

- Use finger-stalls with soft gloves in order to keep display clean during the incoming inspection and assembly process.
- You must mount a Panel using specified mounting holes (Details refer to the drawings)
- You should consider the mounting structure so that uneven force (ex. Twisted stress, Concentrated stress)is not applied to the Panel. And the case on which a Panel is mounted should have sufficient strength so that external force is not transmitted directly to the Panel.
- Do not apply mechanical stress or static pressure on Panel; Abnormal display cause by pressing some parts of Panel during assembly process, do not belong to product failure, the press should be agreed by two sides.
- Determine the optimum mounting angle, refer to the viewing angle range in the specification for each model.
- Do not apply mechanical stress or static pressure on Panel , and avoid impact, vibration and falling.
- Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- Protection film for polarizer on the Panel should be slowly peeled off before display.
- Be careful to prevent water \& chemicals contact the Panel surface.
- You should adopt radiation structure to satisfy the temperature specification.
- Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)
- When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzine. Normal-hexane \& alcohol is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene, because they cause chemical damage to the polarizer.
- Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading..
- This Panel has its circuitry PCB's on the rear side and Driver IC, should be handled carefully in order not to be stressed.
- Avoid impose stress on PCB and Driver IC during assembly process ,Do not drawing, bending, COF package \& wire
- Do not disassemble the Panel.

9.2 Operating Precautions

- Do not connector or disconnect the cable to/from the Panel at the "Power On" Condition.
- When the Panel is operating, do not lose CLK, ENAB signals. If any one of these signals is lost, the Panel would be damaged.
- Obey the supply voltage sequence. If wrong sequence is applied, the Panel would be damaged.
- Do not allow to adjust the adjustable resistance or switch
- The electrochemical reaction caused by DC voltage will lead to LCD Panel degradation, so DC drive should be avoided.
- The LCD Panels use C-MOS LSI drivers, so customers are recommended that any unused input terminal would be connected to Vdd or Vss, do not input any signals before power is turn on, and ground you body, work/assembly area, assembly equipment to protect against static electricity.
- Do not exceed the absolute maximum rating value. (supply voltage variation, input voltage variation, variation in part contents and environmental temperature, and so on) Otherwise the Panel may be damaged.
- Panel has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
- Design the length of cable to connect between the connector for back-light and the converter as shorter as possible and the shorter cable shall be connected directly , The long cable between back-light and Converter may cause the Luminance of LED to lower and need a higher startup voltage
- The cables should be as short as possible between System Board and PCB interface.
- Connectors are precision devices to transmit electrical signals, and operators should plug in parallel
- Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.

9.3 Electrostatic Discharge Precautions

- Avoid the use work clothing made of synthetic fibers. We recommend cotton clothing or other conductivity-treated fibers.
- Since a Panel is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc.
- Do not close to static electricity to avoid product damage.
- Do not touch interface pin directly.

9.4 Precautions for Strong Light Exposure

- Do not leave the Panel operation or storage in Strong light. Strong light exposure causes degradation of polarizer and color filter.

9.5 Precautions for Storage

A. Atmosphere Requirement

ITEM	UNIT	MIN	MAX
Storage Temperature	$\left({ }^{\circ} \mathrm{C}\right)$	5	40
Storage Humidity	$(\% \mathrm{rH})$	40	75
Storage Life	6 months		
Storage Condition	- The storage room should be equipped with a dark and good ventilation facility.		
Prevent products from being exposed to the direct sunlight, moisture - The water. - The product need to keep away from organic solvent and corrosive gas. - Storage condition is guaranteed under packing conditions.			

B. Package Requirement

- The product should be placed in a sealed polythene bag.
- Product Should be placed on the pallet, Which is away from the floor, Be cautions not to pile the product up.
- The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.
- As the original protective film, do not use the adhesive protective film to avoid change of Pol color and characteristic.

9.6 Precautions for protection film

- Remove the protective film slowly, keeping the removing direction approximate 30-degree not vertical from panel surface, If possible, under ESD control device like ion blower, and the humidity of working room should be kept over $50 \% \mathrm{RH}$ to reduce the risk of static charge.
- People who peeled off the protection film should wear anti-static strap and grounded well.

9.7 Appropriate Condition for Commercial Display

-Generally large-sized LCD Panels are designed for consumer applications . Accordingly, long-term display like in Commercial Display application, can cause uneven display including image sticking. To optimize Panel's lifetime and function, several operating usages are required.

1. Normal operating condition

- Temperature: $20 \pm 15^{\circ} \mathrm{C}$
- Operating Ambient Humidity : 55 $\pm 20 \%$
- Display pattern: dynamic pattern (Real display)
- Well-ventilated place is recommended to set up Commercial Display system

2. Special operating condition
a. Ambient condition

- Well-ventilated place is recommended to set up Commercial Display system.
b. Power and screen save
- Periodical power-off or screen save is needed after long-term display.
c. As the low temperature, the response time is greatly delayed. As the high temperatures (higher than the operating temperature) the LCD Panel may turn black screen. The above phenomenon cannot explain the failure of the display. When the temperature returns to the normal operating temperature, the LCD Panel will return to normal display.
d. When expose to drastic fluctuation of temperature (hot to cold or cold to hot) ,the LCD Panel may be affected; Specifically, drastic temperature fluctuation from cold to hot ,produces dew on the LCD Panel 's surface which may affect the operation of the polarizer and LCD Panel e. Do not exceed the absolute maximum rating value. (supply voltage variation, input voltage variation, variation in part contents and environmental temperature, and so on) Otherwise the Panel may be damaged.
f. Product reliability and functions are only guaranteed when the product is used under right operation usages. If product will be used in extreme conditions such as high temperature, high humidity, high altitude, special display images, running time, long time operation, outdoor operation, etc. It is strongly recommended to contact BOE for filed application engineering advice. Otherwise, its reliability and function may not be guaranteed. Extreme conditions are commonly found at airports, transit stations, banks, stock market and controlling systems.

3. Operating usages to protect against image sticking due to long-term static display.
a. Suitable operating time: under 20 hours a day.
b. Static information display recommended to use with moving image.

- Cycling display between 5 minutes' information(static) display and 10 seconds' moving image.
c. Background and character (image) color change
- Use different colors for background and character, respectively.
- Change colors themselves periodically.
d. Avoid combination of background and character with large different luminance.

1) Abnormal condition just means conditions except normal condition.
2) Black image or moving image is strongly recommended as a screen save
4. Lifetime in this spec. is guaranteed only when Commercial Display is used according to operating usages.

9.8 Other Precautions

A. LC Leak

- If the liquid crystal material leaks from the panel, it is recommended to wash the LC with acetone or ethanol and then burn it.
- If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- If LC in mouth, mouth need to be washed, drink plenty of water to induce vomiting and follow medical advice.
- If LC touch eyes, eyes need to be washed with running water at least 15 minutes.
B. Rework
- When returning the Panel for repair or etc., Please pack the Panel not to be broken. We recommend to use the original shipping packages.

