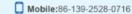
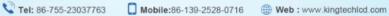


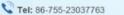

PRODUCT SPECIFICATIONS

	For Customer:			☐ : APPROVAL FOR SPECIFICATION		
Customer Model No			☐ : APPROVAL FOR SAMPLE			
Modu	ule No.:PV0276	00D0140A	Dat	e : 2023.04.07		
of Con	tents					
No.		Item		Page		
1	Cover Sheet(Table	of Contents)				
2	Revision Record					
3	General Specification	ons				
4	Outline Drawing					
5	Absolute Maximum	n Ratings				
6	Electrical Specifica	tions				
7	Optical Characteris	tics				
8	Reliability Test Iter	ns and Criteria				
9	Precautions for Use	e of LCD Modules				
	mer's Acceptance:		Comr	nent		
	mer's Acceptance:		Comr	nent		
Ap		СНЕСКЕД	Comr	nent		
Ap	pproved By		Comr			
Ap	PREPARED		Comr			




2. Revision Record

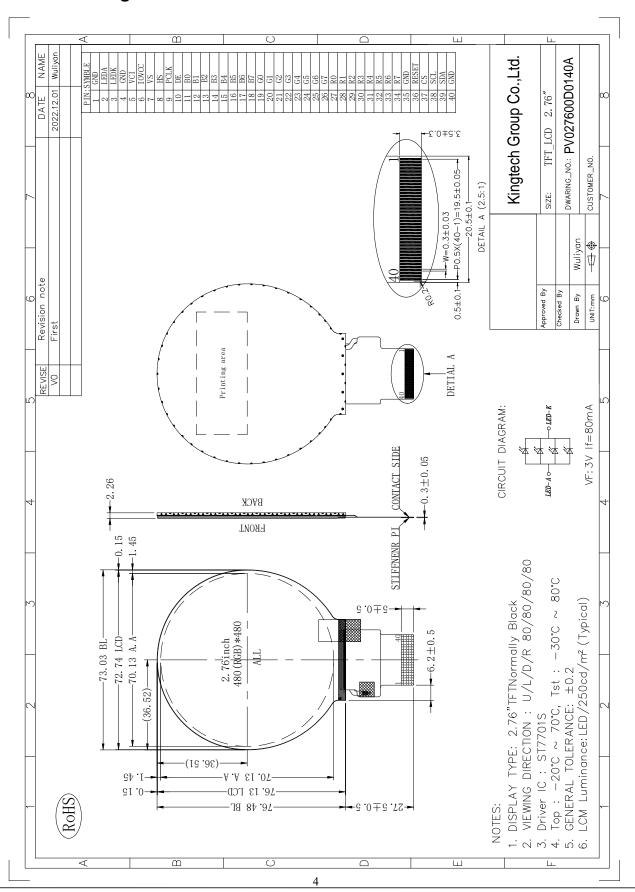
Date	Rev.No.	Page	Revision Items	Prepared
2023.04.07	V0		The first release	NIKOLA

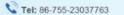


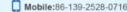
3. General Specifications

PV027600D0140A is a TFT-LCD module. It is composed of a TFT-LCD panel, driver IC, FPC,a back light unit and. The 2.76" display area contains 480x480 pixels and can display up to 16.7M colors. This product accords with RoHS environmental criterion.

Item	Contents	Unit	Note
LCD Type	TFT	-	
Display color	16.7M		
Viewing Direction	ALL	O'Clock	
Operating temperature	-20~+70	$^{\circ}$	
Storage temperature	-30~+80	$^{\circ}$	
Module size	Refer to outline drawing	mm	
Active Area(W×H)	70.13X36.51	mm	
Number of Dots	480×480	dots	
Driver IC	ST7701S	-	
Power Supply Voltage	3.3	V	
Outline Dimensions	Refer to outline drawing	-	
Backlight	4P-LEDs (white)	pcs	
Interface	RGB24bit	-	







4. Outline. Drawing

5. Absolute Maximum Ratings(Ta=25°C)

5.1 Electrical Absolute Maximum Ratings.(Vss=0V, Ta=25°C)

Item	Symbol	Min.	Max.	Unit	Note
Power Supply Voltage	V _{VCI}	-0.3	4.6	V	1, 2
Power Supply Voltage I/O	Viovec	-0.3	4.6	V	

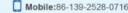
Notes:

- 1. If the module is above these absolute maximum ratings. It may become permanently damaged. Using the module within the following electrical characteristic conditions are also exceeded, the module will malfunction and cause poor reliability.
- 2. $V_{DD} > V_{SS}$ must be maintained.
- 3. Please be sure users are grounded when handing LCD Module.

5.2 Environmental Absolute Maximum Ratings.

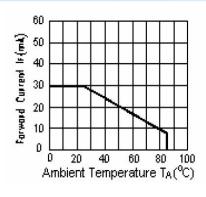
Item	Stor	age	Operating		
Tion in	MIN.	MAX.	MIN.	MAX.	
Ambient Temperature	-30°C	80°C	-20°C	70°C	
Humidity	-	-	-	-	

- 1. The response time will become lower when operated at low temperature.
- 2. Background color changes slightly depending on ambient temperature.


The phenomenon is reversible.

3. Ta<=40 °C:85%RH MAX.

Ta>=40 °C:Absolute humidity must be lower than the humidity of 85%RH at 40 °C.



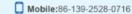
ILED VS TEMP

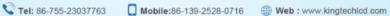
6. Electrical Specifications and Instruction Code

6.1 Electrical characteristics(Vss=0V, Ta=25°C)

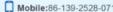
Parameter		Symbo I	Condition	Min	Тур	Max	Unit	Note
Power supply		VCI	Ta=25°C	2.5	2.8	3.6	V	
Power supply I/O		IOVCC	Ta=25°C	1.65	1.8	3.3		
Input	'H'	V _{IH}	V _{IOVCC} =3.3V	0.7V _{IOVCC}	-	V _{IOVCC}	٧	
voltage	'L'	VIL	V _{IOVCC} =3.3V	0	-	0.3V _{IOVCC}	V	


Note: If one of the above items is exceeded its maximum limitation momentarily, the quality of the product may be degraded. Absolute maximum limitation, therefore, specify the values exceeding which the product may be physically damaged. Be sure to use the product within the recommend range.


6.2 LED backlight specification(VSS=0V ,Ta=25 \mathcal{C})

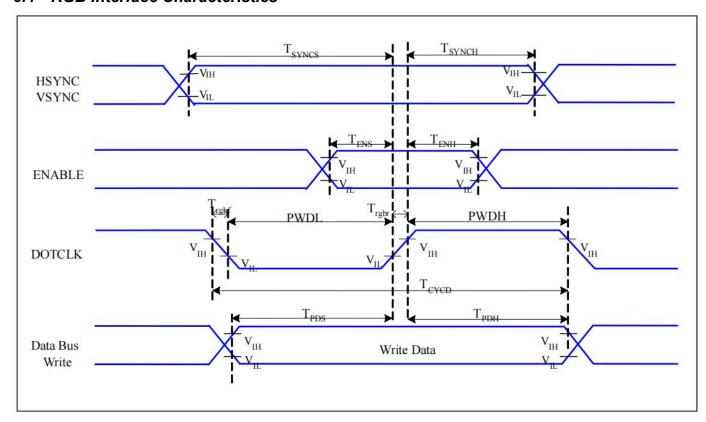

Item	Symbol	Condition	Min	Тур	Max	Unit	Note
Supply voltage LEDA	V _f	If=4X20mA	-	3	3.3	V	
Uniformity	∆Вр	lf=4X20mA	80	-	-	%	
LED Life Time	-	If=4X20mA	20000	-	-	hr	1

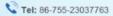
Note 1: Brightness to be decreased to 50% of the initial value at ambient temperature TA=25 $\mathcal C$

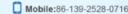

6.3 Interface signals

6.3.1 LCM PIN

Pin No.	Symbol	I/O	Function
1	GND	Р	Connect to Ground.
2	LEDA	Р	LED back light(Anode).
3	LEDK	Р	LED back light(Cathode).
4	GND	Р	Connect to Ground.
5	VCI	Р	Power Supply for Analog, Digital System and Booster Circuit.
6	IOVCC	Р	Power Supply for I/O System.
7	VS	1	Frame synchronizing signal for RGB interface operation.
8	HS	1	Line synchronizing signal for RGB interface operation.
9	PCLK	1	Dot clock signal for RGB interface operation.
10	DE	1	Data enable signal for RGB interface operation.
11-18	B0-B7	1	Blue data input pin.
19-26	G0-G7	1	Green data input pin.
27-34	R0-R7	1	Red data input pin.
35	GND	Р	Connect to Ground.
36	RESET	1	Global reset signal input pin.
37	CS	I	Chip select input pin.
38	SCL	I	Serial interface clock pin.
39	SDA	I	Serial in/out signal pin.
40	GND	Р	Connect to Ground.

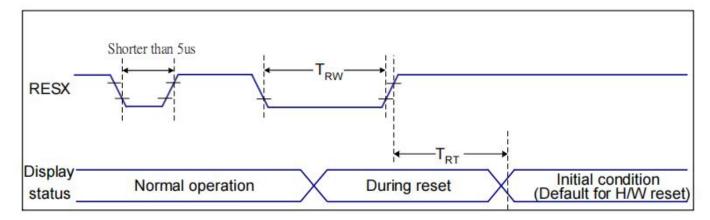



RGB Interface Characteristics



VDDI=1.8, VDD=2.8, AGND=DGND=0V, Ta=25 ℃

Signal	Symbol	Parameter	MIN	MAX	Unit	Description
HSYNC, VSYNC	Tsyncs	VSYNC, HSYNC Setup Time	5	10	ns	
ENABLE	Tens	Enable Setup Time	5	_	ns	
ENABLE	Tenh	Enable Hold Time	5	-	ns	
	PWDH	DOTCLK High-level Pulse Width	15	Α.	ns	
DOTOLK	PWDL	DOTCLK Low-level Pulse Width	15		ns	
DOTCLK	Тсуср	DOTCLK Cycle Time	33	- 5	ns	
	Trghr, Trghf	DOTCLK Rise/Fall time	-	15	ns	
DD	T _{PDS}	PD Data Setup Time	5	5	ns	
DB	T _{PDH}	PD Data Hold Time	5	3	ns	



6.5 Reset Timing

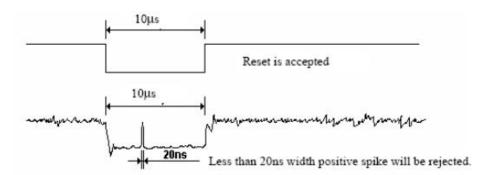
VDDI=1.8.VDD=2.8, AGND=DGND=0V, Ta=25 ℃

Related Pins	Symbol	Parameter	MIN	MAX	Unit
	TRW	Reset pulse duration	10		us
RESX	TOT			5 (Note 1, 5)	ms
	TRT	Reset cancel		120(Note 1, 6, 7)	ms

Notes:

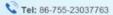
- 1. The reset cancel includes also required time for loading ID bytes, VCOM setting and other settings from NVM (or similar device) to registers. This loading is done every time when there is HW reset cancel time (tRT) within 5 ms after a rising edge of RESX.
 - 2. Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below:

RESX Pulse	Action	
Shorter than 5us	Reset Rejected	
Longer than 9us	Reset	
Between 5us and 9us	Reset starts	


- 3. During the Resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out -mode. The display remains the blank state in Sleep In -mode.) and then return to Default condition for Hardware Reset.
 - 4. Spike Rejection also applies during a valid reset pulse as shown below:



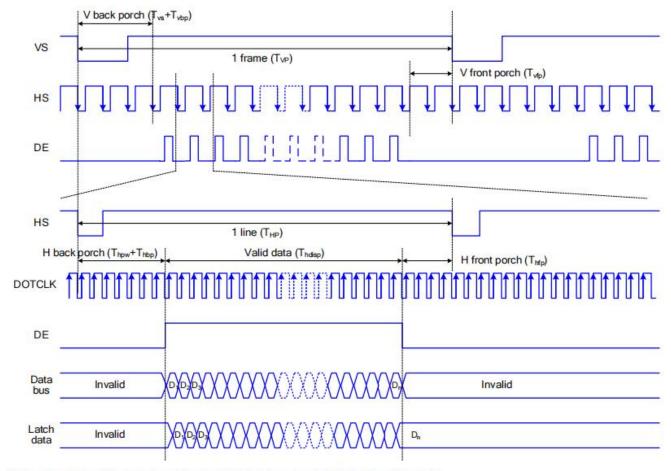
- When Reset applied during Sleep In Mode.
- 6. When Reset applied during Sleep Out Mode.
- It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec.


6.6 RGB Interface Definition

The display operation via the RGB interface is synchronized with the VSYNC, HSYNC, and DOTCLK signals. The data can be written only within the specified area with low power consumption by using window address function. The back porch and front porch are used to set the RGB interface timing.

Vertical Sync.

Please refer to the following table for the setting limitation of RGB interface signals.


Parameter	Symbol	Min.	Тур.	Max.	Unit
Horizontal Sync. Width	hpw	2	-	255 (Note 2)	Clock
Horizontal Sync. Back Porch	hbp	2		255 (Note 2)	Clock
Horizontal Sync. Front Porch	hfp	2		0.€1	Clock
Vertical Sync. Width	vs	2		254 (Note 2)	Line
Vertical Sync. Back Porch	vbp	2		254 (Note 2)	Line
Vertical Sync. Front Porch	vfp	2		.=.	Line

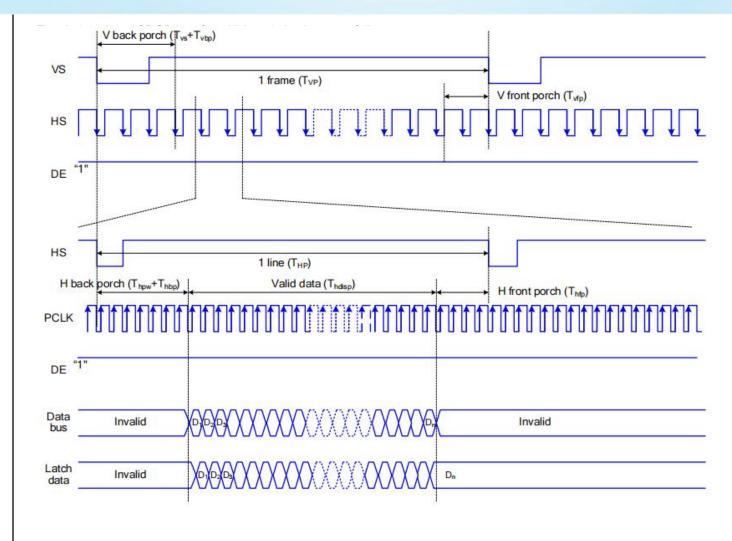
Note:

- 1. Typical value are related to the setting frame rate is 60Hz..
- VS+VBP<=254, HPW+HBP<=255

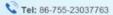
6.7 RGB Interface Timing

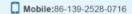
The timing chart of RGB interface DE mode is shown as follows.

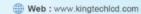
Note: The setting of front porch and back porch in host must match that in IC as this mode.



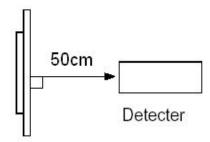
Tel: 86-755-23037763


Item	Symbol		Condition	Min.	Тур.	Max.	Unit	Note
Brightness	Вр		<i>θ</i> =0°	-	250	-	Cd/m ²	1
Uniformity	⊿Bp		Ф=0°	80	-	-	%	1,2
	3:00		Cr≥10	80	85	-	Deg	3
Viewing Angle	6:00			80	85	-		
	9:00			80	85	-		
	12:00			80	85	-		
Contrast Ratio	Cr		<i>θ</i> =0° Φ=0°	1000	1200	-	-	4
Response Time	T _r +T _f			-	35	40	ms	5
Color of CIE Coordinate	W	х	<i>θ</i> =0° Φ=0°	Typ- 0.05	0.3414	Typ+0. 05	-	1,6
		у			0.4044		-	
	R	х			0.6476		-	
		у			0.3261		-	
	G	х			0.3454		-	
		у			0.3923		-	
	В	х			0.1521		-	
		у			0.1057		-	
NTSC Ratio	S			60	65	-	%	

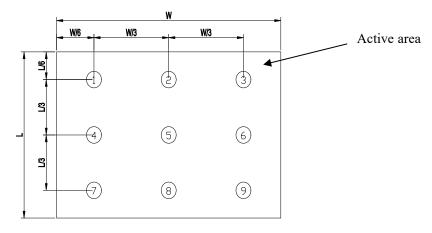

Note: The parameter is slightly changed by temperature, driving voltage and materiel


Note 1: The data are measured after LEDs are turned on for 5 minutes. LCM displays full white. The brightness is the average value of 9 measured spots. Measurement equipment BM-7 (Φ5mm) Measuring condition:

- Measuring surroundings: Dark room.
- Measuring temperature: Ta=25 $^{\circ}$ C.
- Adjust operating voltage to get optimum contrast at the center of the display.

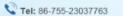


Measured value at the center point of LCD panel after more than 5 minutes while backlight turning on.



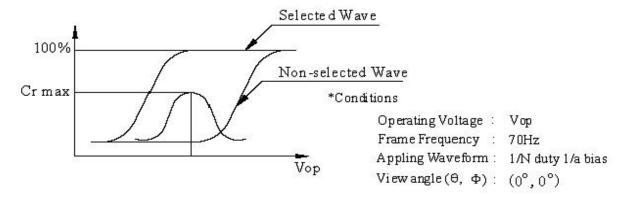
Note 2: The luminance uniformity is calculated by using following formula.

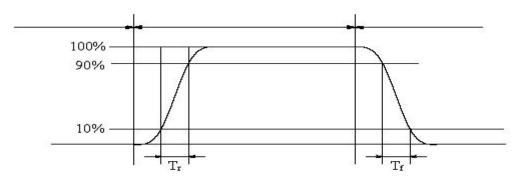
$$\triangle Bp = Bp (Min.) / Bp (Max.) \times 100 (%)$$


Bp (Max.) = Maximum brightness in 9 measured spots

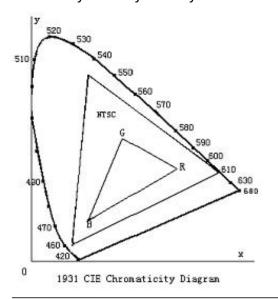
Bp (Min.) = Minimum brightness in 9 measured spots.

Note 3: The definition of viewing angle: Refer to the graph below marked by ϑ and Φ



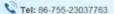

Note 4: Definition of contrast ratio. (Test LCD using DMS501)

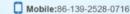
 $Contrast \ ratio(Cr) = \frac{Brightness \ of \ selected \ dots}{Brightness \ of \ non-selected \ dots}$


Note 5: Definition of Response time. (Test LCD using DMS501):

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (falling time) and from "white" to "black" (rising time), respectively. The response time is defined as the time interval between the 10% and 90% of amplitudes.Refer to figure as below.

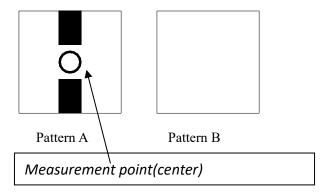
The definition of response time


Note 6: Definition of Color of CIE Coordinate and NTSC Ratio.

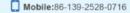



Color gamut:

$$S = \frac{area \ of \ RGB \ triangle}{area \ of \ NTSC \ triangle} \times 100\%$$



Note 7: Definition of cross talk.

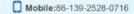

Cross talk ratio(%)=|pattern A Brightness-pattern B Brightness|/pattern A Brightness*100



Electric volume value=3F+/-3Hex

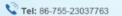
8. Reliability Test Items and Criteria

No	Test Item	Test condition	Criterion	
1	High Temperature Storage	80°C±2°C 96H Restore 2H at 25°C Power off		
2	Low Temperature Storage	-30°C±2°C 96H Restore 2H at 25°C Power off	1. After testing,	
3	High Temperature Operation	70°C±2°C 96H Restore 2H at 25°C Power on	cosmetic and electrical defects should not happen.	
4	Low Temperature Operation	-20°C±2°C 96H Restore 2H at 25°C Power on	2. Total current consumption should not be more than twice	
5	High Temperature/Humidity Operation	60°C±2°C 90%RH 96H Power on	of initial value.	
6	Temperature Cycle	-20°C←		


Note: Operation: Supply 3.3V for logic system.

The inspection terms after reliability test, as below

ITEM	Inspection	
Contrast	CR>50%	
IDD	IDD<200%	
Brightness	Brightness>60%	
Color Tone	Color Tone+/-0,05	


9. Precautions for Use of LCD Modules

9.1 Handling Precautions

- 9.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 9.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 9.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 9.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 9.1.5 If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
 - Isopropyl alcohol Ethyl alcohol

 Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:
- Water Ketone Aromatic solvents
- 9.1.6 Do not attempt to disassemble the LCD Module.
- 9.1.7 If the logic circuit power is off, do not apply the input signals.
- 9.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - a. Be sure to ground the body when handling the LCD Modules.
 - b. Tools required for assembly, such as soldering irons, must be properly ground.
 - c. To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
 - d. The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

9.2 Storage precautions

- 9.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 9.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:

0° $C\sim40$ °CTemperature:

Relatively humidity: ≤80%

9.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas.

9.3 The LCD modules should be no falling and violent shocking during transportation, and also shoul avoid excessive press, water, damp and sunshine.

<u>END</u>