

PRODUCT SPECIFICATIONS

For Customer: _____

□ : APPROVAL FOR SPECIFICATION

Customer Model No.

Module No.: PV04016D0130Q Date : 2023.6.6

Table of Contents

No.	Item	Page
1	Cover Sheet(Table of Contents)	
2	Revision Record	
3	General Specifications	
4	Outline Drawing	
5	Absolute Maximum Ratings	
6	Electrical Specifications	
7	Optical Characteristics	
8	Reliability Test Items and Criteria	
9	Precautions for Use of LCD Modules	

For Customer's Acceptance:

Approved By	Comment

PREPARED	CHECKED	VERIFIED BY QA DEPT	VERIFIED BY R&D DEPT
Nikola			

C Tel: 86-755-23037763 🛛 Mobile:86-139-2528-0716 🛛 🕮 Web : www.kingtechlod.com

2. Revision Record

Date	Rev.No.	Page	Revision Items	Prepared
2023.6.6	V0		The first release	Nikola
			2	

3. General Specifications

PV04016D0130Q is a TFT-LCD module. It is composed of a TFT-LCD panel, driver IC, FPC, a back light unit . The 4.0' display area contains 720X(RGB)x720 pixels and can display up to 16.7M colors. This product accords with ROHS environmental criterion.

Item	Contents	Unit	Note
LCD Type	TFT	-	
Display color	16.7M		1
Viewing Direction	ALL	O'Clock	
Operating temperature	-20~+70	°C	
Storage temperature	-30~+80	°C	
Module size	105.61X109.87X2.09	mm	2
Active Area(W×H)	101.52X101.52	mm	
Number of Dots	720×720	dots	
Controller	SC7707	-	
Backlight	6S2P-LEDs (white)	pcs	
Weight		g	
Interface	MIPI	-	

Note 1: Color tune is slightly changed by temperature and driving voltage.

Note 2: Without FPC and Solder.

Professional LCD Module Manufacturer since 2003

Tel: 86-755-23037763

Mobile:86-139-2528-0716 Web : www.kingtechlcd.com

4. Outline. Drawing

5. Absolute Maximum Ratings(Ta=25°C)

5.1 Electrical Absolute Maximum Ratings.(Vss=0V,Ta=25°C)

ltem	Symbol	Min.	Max.	Unit	Note
Power Supply Voltage	VCI_3.3V	-0.3	6.6	V	1.2
Power Supply Voltage for I/O	IOVCC_1.8V	-0.3	3.3	V	

Notes:

1. If the module is above these absolute maximum ratings. It may become permanently damaged. Using the module within the following electrical characteristic conditions are also exceeded, the module will malfunction and cause poor reliability.

- 2. $V_{CI} > V_{SS}$ must be maintained.
- 3. Please be sure users are grounded when handing LCD Module.

5.2 Environmental Absolute Maximum Ratings.

ltem	Stor	age	Opera	Note		
	MIN.	MAX.	MIN.	MAX.	NOIC	
Ambient Temperature	-30 ℃	80 ℃	-20 ℃	70 ℃	1,2	
Humidity	-	-	-	-	3	

Notes:

- 1. The response time will become lower when operated at low temperature.
- 2. Background color changes slightly depending on ambient temperature.

The phenomenon is reversible.

3. Ta<=40 ℃:85%RH MAX.

Ta>=40 C:Absolute humidity must be lower than the humidity of 85%RH at 40 C.

6. Electrical Specifications

6.1 Electrical characteristics(Vss=0V,Ta=25°C)

Parameter		Symbol	Condition	Min	Тур	Max	Unit	Note
Power supply		VCC_3.3V	Ta=25 ℃	2.6	2.8	3.3	V	
		IOVCC_1.8V	Ta=25 ℃	1.65	1.8	3.3		
Input	'H'	VIH	IOVCC_1.8V= 1.8V	0.8*IOVCC _1.8V	-	IOVCC_1. 8V	V	
voltage	'L'	VIL	IOVCC_1.8V= 1.8V	0	-	0.2*IOVC C_1.8V	V	

6.2 LED backlight specification(VSS=0V ,Ta=25°C)

Item	Symbol	Condition	Min	Тур	Max	Unit	Note
Supply voltage	V _f	lf=40mA	-	18.0	-	V	
Uniformity	∆Вр	lf=40mA	80	-	-	%	
Life Time	time	lf=40mA	30K	-		hours	1

6

💙 Tel: 86-755-23037763 🛛 🚺 Mobile:86-139-2528-0716 🛛 🌐 Web : www.kingtechlod.com

6.3 Interface signals

Pin No.	Symbol	I/O	Function
1	LEDA	Р	LED back light(Anode).
2-3	LEDK	Р	LED back light(Cathode).
4	VCI_3.3V	Р	Power Supply +3.3V.
5	IOVCC_1.8V	Р	Power Supply +1.8V.
6	RESET	I	Global reset signal input pin.
7	TE	I	Tearing effect output.
8	PWM	I	The PWM frequency output for LCD driver control. Please NC
9	GND	Р	Ground.
10	D0P	Ι	DSI-D0+ data signal.
11	D0N	Ι	DSI-D0- data signal.
12	GND	Ρ	Ground.
13	D1P	Ι	DSI-D1+ data signal.
14	D1N	Ι	DSI-D1- data signal.
15	GND	Ρ	Ground.
16	CLKP	Ι	DSI-Clock+.
17	CLKN	I	DSI-Clock
18	GND	Р	Ground.
19	D2P	Ι	DSI-D2+ data signal.
20	D2N	I	DSI-D2- data signal.
21	GND	Р	Ground.
22	D3P	Ι	DSI-D3+ data signal.
23	D3N	Ι	DSI-D3- data signal.
24	GND	Р	Ground.
25	TP_INT	Ι	Touch Interrupt. Please NC
26	TP_SDA	I	Touch IIC Data signal. Please NC
27	TP_SCL	I	Touch IIC Clock signal. Please NC
28	TP_RESET	I	Touch Reset Signal.Please NC
29	TP_VCI	Ρ	Touch Power supply.Please NC
30	TP_VCI	Ρ	Touch Power supply.Please NC

6.4 AC Characteristics

6.4.1 Vertical Timings for DSI video mode

Vertical timings for DSI interface

Condition : Ta =25°C, Resolution = 720(RGB)*1280.

Devemeter	Sumbol	Nadditiana	Sp	ecificatio	Unit	Natao	
Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit	Notes
Vertical Total	VTOTAL		1286			Line	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Vertical low pulse width	Vsw		2			Line	1
Vertical front porch	VFP	3	2 .			Line	
Vertical back porch	VBP		2			Line	1
Vertical data start point		VSW+VBP	4			Line	1
Vertical blanking period	VPT	VSW+VBP+VFP	6			Line	
Vertical active area	4	VDISP	-	1280	1760	Line	
Vertical Frame rate	VFR			60		Hz	

Note 1: The VSW and VBP pulse width are related to panel GOA timing. The GOA timing must be set at corresponding position for LCM normal display.

💙 Tel: 86-755-23037763

Mobile:86-139-2528-0716 🛛 🕮 Web : www.kingtechlcd.com

6.5 MIPI AC Characteristics 6.5.1 High Speed Mode - Clock Timings CLKP -CLKN UIINSTB Ulinsta CLKP 2 x Ulinst CLKN **Clock Timing** Specification Signal Symbol Parameter Unit Notes MIN TYP MAX CLK P/N 2xUIINST Double UI instantaneous 2.5 12.5 ns CLK P/N ULINSTA, ULINSTB **UI instantaneous Half** 1.25 6.25 1,2 ns Note 1: UI = UIINSTA = UIINSTB. Note 2: ICNL9707 can support max 600Mbps/lane at 4 lane and max 800Mbps/lane at 3 lane application. 6.5.2 High Speed Mode - Clock / Data Timings

	0 milest	Descenter	Spe	cificati	11	Madaa	
Signar	Symbol	Parameter	MIN	TYP	MAX	Unit	Notes
Do P/N	tDS	Data to Clock Setup time	0.15*UI			UI	
(n=0,1,2 and 3)	tDH	Clock to Data Hold time	0.15*UI			UI	

Rising and Falling Timings

	0	0	Sp	ecificat	ion			
Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit	Notes	
Differential Rise Time for Clock	TDRTCLK	CLKP/N	150pS	X	0.3*UI	X	2,3	
Differential Rise Time for Data	t DRTDATA	DnP/N	150pS	$\langle \rangle$	0.3*UI		1,2,3	
Differential Fall Time for Clock	TOFTCLK	CLKP/N	150pS	1	0.3*UI		2,3	
Differential Fall Time for Data	TDFTDATA	DnP/N	150pS		0.3*UI	2	1,2,3	

Note 1: DnP/N, n =0,1,2 and 3.

Note 2: The display module has to meet timing requriements, which are defined for the transmitter (MCU) on MIPI D-PHY standard.

Note 3: DSI-CLK+ = CLKP, DSI-CLK- =CLKN, DSI-D0+ =D0P, DSI-D0- =D0N.

6.5.4 Low Speed Mode - Bus Turn Around

Bus Turnaround (BTA) from MCU to display module Timing

C Tel: 86-755-23037763

Mobile:86-139-2528-0716 🛛 🕮 Web : www.kingtechlcd.com

Bus Turnaround (BTA) from Display module to MCU Timing

ſ	Olamat	O	The Deservation	Sp	ecificat	11-14	Netze		
	Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Notes	
	D0P/N	Терхм	Length of LP-00,LP-01,LP-10 or LP11 periods MCU to Display Module	50		75	nS	1	
	D0P/N	TLPXD	Length of LP-00,LP-01,LP-10 or LP11 periods Display Module to MCU	50		75	nS	1	
X	DOP/N		Time-out before the Display Module starts driving	TLPXD		2* TLPXD	nS	1	
X	D0P/N		Time to drive LP-00 by Display Module	5* TLPXD			nS	1	
	DOP/N	TTA_GOD	Time to drive LP-00 after turnaround request -MCU	4 * TLPXD			nS	1	

Note 1: D0P = DSI-D0+, D0N = DSI-D0-.

6.5.5 Data Lanes from Low Power Mode to High Speed Mode

C Tel: 86-755-23037763

Mobile:86-139-2528-0716

Web : www.kingtechlcd.com

Signal			Sp	ion			
	Symbol	Parameter	MIN	TYP	MAX	Unit	Notes
DnP/N	TLPX	Length of any Low Power State Period	50	N	1.	nS	1
DnP/N	THS-PREPARE	Time to drive LP-00 to prepare for HS Transmission	40+4*UI	1	85+6*UI	nS	1
DnP/N	THS-TREM-EN	Time to enable Data lane Receiver line termination measured from when Dn crosses VILMAX			35+4*UI	nS	1

If the last load bit is HS-1, the transmitter changes from HS-1 to HS-0

Signal	Symbol		N) S	specific			
		Parameter	MIN	TYP	MAX	Unit	Notes
DnP/N	THS-SKIP	Time-Out at Display Module to ignore transition period of EoT	40		55+4*UI	nS	1
DnP/N	THS-EXIT	Time to drive LP-11 after HS burst	100			nS	1

Note 1: DnP/N, n=0,1,2 and 3.

💙 Tel: 86-755-23037763

Mobile:86-139-2528-0716 🛛 🕮 Web : www.kingtechlcd.com

1.0

Clock Lane - High speed mode to / from Low Power Mode Timing

Cinnal	Cumbed.	Demonster	Spec	ification	1	11	Netes
Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Notes
CKP/N	Тск-розт	Time that the MCU shall continue serving HS clock after the last associated Data Lanes has transitioned to LP mode	60+52*UI	l		nS	
CKP/N	TCLK-TRAIL	Time to drive HS differential state after last payload clock bit or a HS transmission burst	6 0			nS	
CKP/N	THS-EXIT	Time to drive LP-11 after HS burst	100			nS	
CKP/N	TCLK- PREPARE	Time to drive VP-00 to prepare for HS transmission	38		95	nS	
CKP/N	TCLK-TERM-	Time-out at Clock Lane to enable HS termination			38	nS	
CKP/N	TCLK- PREPARE1 TCLK-ZERO	Minimum lead HS-0 drive period before starting Clock	300			nS	e 20
CKP/N	TCLK-PRE	Time that the HS clock shall be driven prior to any associated Data Lane beginning the transition from LP to HS mode	8*UI			nS	

KINGTECH

Professional LCD Module Manufacturer since 2003

💙 Tel: 86-755-23037763

Mobile:86-139-2528-0716 🛛 🕮 Web : www.kingtechlcd.com

6.6 Reset Timing

Reset Input Timing

Table 4-2 Reset Input Timing

Cignal	Rumhal	Deremeter	Description	Specification			11	Natas
Signal	Symbol	Parameter	Description	MIN	TYP	MAX	Unit	Notes
	tRESW	Reset "L" pulse width		10	1		uS	1
RESET	tRESET Reset complete time	Poset complete time	When reset applied during Sleep in mode			5	mS	2
		When reset applied during Sleep Out mode		0	120	mS	5	

Note 1: Condition : Ta =25°C.

Note 2: Spike due to an electrostatic discharge on RESET line does not cause irregular system reset according to the table below.

RESET Pulse	Action
Less than 5us	Reset Rejected
More than 10uS	Reset
Between 5us and 10uS	Reset Start

Note 2: During the resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120ms, when Reset Starts in sleep out mode. The display remains the blank state in sleep in mode) and then return to Default condition for HW RESET.

Note3: During Reset Complete Time, values in OTP memory will be latched to internal register during this period. This loading is done every time when there is H/W RESET complete time (tRESET) within 5ms after a rising edge of RESET.

Note 4: Spike Rejection also applies during a valid reset pulse as shown below:

Note 5: It is necessary to wait 5ms after releasing RESET when sending commands, and Sleep Out command can not be sent within 120ms.

KINGTECH

7. Optical Characteristics

Item	Symbol		Condition	Min.	Тур.	Max.	Unit	Note				
Brightness	Вр		Вр		Вр		<i>θ</i> =0°	-	300	-	Cd/m ²	1
Uniformity	2	Bp	Φ = 0°	80	-	-	%	1,2				
	3	:00		-	85	-						
Viewing	6	:00		-	85	-						
Angle	9	:00	Cr≥10	-	85	-	Deg	3				
	12	2:00		-	85	-						
Contrast Ratio		Cr	<i>θ</i> =0°	-	600	-	-	4				
Response Time	T _{r+} T _f		Ф = 0°	-	30	35	ms	5				
	w	x			0.292	-	-					
		у			0.337		-					
	R	x			0.650		-					
Color of CIE		у		Тур	0.322	Тур	-					
Coordinate	0	x	<i>θ</i> =0°	-0.05	0.280	+0.05	-	1,6				
	G	у	Φ-0		0.563		-					
		х			0.135		-					
	B	у			0.141		-					
NTSC Ratio		S		-	68	-	%					

16

Note: The parameter is slightly changed by temperature, driving voltage and materiel Note 1: The data are measured after LEDs are turned on for 5 minutes. LCM displays full white. The brightness is the average value of 9 measured spots. Measurement equipment BM-7

KINGTECH

(Φ5mm)

Measuring condition:

- Measuring surroundings: Dark room.
- Measuring temperature: Ta=25 \mathcal{C} .
- Adjust operating voltage to get optimum contrast at the center of the display.

Measured value at the center point of LCD panel after more than 5 minutes while backlight turning on.

Note 2: The luminance uniformity is calculated by using following formula.

⊿Bp = Bp (Min.) / Bp (Max.)×100 (%)

Bp (Max.) = Maximum brightness in 9 measured spots

Bp (*Min.*) = *Minimum brightness in 9 measured spots.*

💙 Tel: 86-755-23037763 🛛 🚺 Mot

Mobile:86-139-2528-0716

Web : www.kingtechlcd.com

from "black" to "white" (rising time) and from "white" to "black" (falling time), respectively. The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as below.

Note 6: Definition of Color of CIE Coordinate and NTSC Ratio.

Color gamut:

 $S = \frac{area of RGB triangle}{area of NTSC triangle} \times 100\%$

*Note 7: Definition of cross talk. Cross talk ratio(%)=\pattern A Brightness-pattern B Brightness\/pattern A Brightness*100*

Electric volume value=3F+/-3Hex

8. Reliability Test Items and Criteria

Test Item	Test condition	Remark
High Temperature Storage	Ta = 80℃ 96hrs	Note1,Note3, 4
Low Temperature Storage	Ta = -30℃ 96hrs	Note1,Note3, 4
High Temperature Operation	Ts = 70°C 96hrs	Note2,Note3, 4
Low Temperature Operation	Ta = -20℃ 96hrs	Note1,Note3, 4
Operation at High Temperature/Humidity	+60℃, 90%RH 96hrs	Note3, 4
Thermal Shock	-30℃/30 min ~ +80℃/30 min for a total 10 cycles, Start with cold temperature and end with high temperature.	Note3, 4
Vibration Test	Frequency range:10~55Hz Stroke:1.5mm Sweep:10Hz~55Hz~10Hz 2 hours for each direction of X. Y. Z. (6 hours for total)	
Mechanical Shock	100G 6ms,±X, ±Y, ±Z 3 times for each direction	
Package Vibration Test	Random Vibration : 0.015G*G/Hz from 5-200HZ, -6dB/Octave from 200-500HZ 2 hours for each direction of X. Y. Z. (6 hours for total)	
Package Drop Test	Height:60cm 1 corner, 3 edges, 6 surfaces	
Electro Static Discharge	±2KV, Human Body Mode, 100pF/1500Ω	

Note 1: Ta is the ambient temperature of samples.

Note 2: Ts is the temperature of panel's surface.

Note 3: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.

Note 4: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature

9. Precautions for Use of LCD Modules

9.1 Handling Precautions

- 9.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 9.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 9.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 9.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 9.1.5 If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:

— Isopropyl alcohol — Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

— Water — Ketone — Aromatic solvents

9.1.6 Do not attempt to disassemble the LCD Module.

9.1.7 If the logic circuit power is off, do not apply the input signals.

- 9.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - a. Be sure to ground the body when handling the LCD Modules.
 - b. Tools required for assembly, such as soldering irons, must be properly ground.
 - c. To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
 - d. The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

KINGTECH

9.2 Storage precautions

- 9.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 9.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:

Temperature : 0 $^{\circ}$ C $\,\sim\,$ 40 $^{\circ}$ C

Relatively humidity: ≤80%

9.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas.

9.3 The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.

<u>END</u>